Relative clustering validity criteria: A comparative overview
نویسندگان
چکیده
Many different relative clustering validity criteria exist that are very useful in practice as quantitative measures for evaluating the quality of data partitions, and new criteria have still been proposed from time to time. These criteria are endowed with particular features that may make each of them able to outperform others in specific classes of problems. In addition, they may have completely different computational requirements. Then, it is a hard task for the user to choose a specific criterion when he or she faces such a variety of possibilities. For this reason, a relevant issue within the field of clustering analysis consists of comparing the performances of existing validity criteria and, eventually, that of a new criterion to be proposed. In spite of this, the comparison paradigm traditionally adopted in the literature is subject to some conceptual limitations. The present paper describes an alternative, possibly complementary methodology for comparing clustering validity criteria and uses it to make an extensive comparison of the performances of 40 criteria over a collection of 962,928 partitions derived from five well-known clustering algorithms and 1080 different data sets of a given class of interest. A detailed review of the relative criteria under investigation is also provided that includes an original comparative asymptotic analysis of their computational complexities. This work is intended to be a complement of the classic study reported in 1985 by Milligan and Cooper as well as a thorough extension of a preliminary paper by the authors themselves. 2010 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 3:
منابع مشابه
On the Comparison of Relative Clustering Validity Criteria
Many different relative clustering validity criteria exist that are very useful in practice as quantitative measures for evaluating the quality of data partitions, and new criteria have still been proposed from time to time. These criteria are endowed with particular features that may make each of them able to outperform others in specific classes of problems. Then, it is a hard task for the us...
متن کاملUsing Clustering and Factor Analysis in Cross Section Analysis Based on Economic-Environment Factors
Homogeneity of groups in studies those use cross section and multi-level data is important. Most studies in economics especially panel data analysis need some kinds of homogeneity to ensure validity of results. This paper represents the methods known as clustering and homogenization of groups in cross section studies based on enviro-economics components. For this, a sample of 92 countries which...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملDensity-Based Clustering Validation
One of the most challenging aspects of clustering is validation, which is the objective and quantitative assessment of clustering results. A number of different relative validity criteria have been proposed for the validation of globular, clusters. Not all data, however, are composed of globular clusters. Density-based clustering algorithms seek partitions with high density areas of points (clu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistical Analysis and Data Mining
دوره 3 شماره
صفحات -
تاریخ انتشار 2010